

Introduction to the
onepoint PROJECTS
Database Schema
Dieter Freismuth, Director Development
This technical brief provides a short introduction to the most important tables of the
onepoint PROJECTS database schema.

Technical White Paper

2

Whitepaper

Key Design Goals
onepoint PROJECTS’s database schema was
designed with a number of key design goals in
mind, mainly being open and accessible.

Open and Accessible
The most important goal was to design the database
schema in a way that it is easily accessible. The primary
reason for this being that even the best internal reporting
tool will not be sufficient for all applications. Especially,
executive reporting is often done using one, standardized
reporting/business intelligence tool that is used across all
data being gathered in the enterprise or at least a specific
division.

In order to succeed on this design goal, the following
requirements had to be met:

• Consistent structure and human-readable naming in order
that a 3rd party can understand and use the database
schema

• No or very limited use of proprietary or binary data types –
stick to standard SQL as far as possible

• No incremental storage (e.g., for versioning), since it
makes external querying of the database problematic and
sometimes nearly impossible

Finally, the database schema would have to be open, i.e.,
documented.

Fast Access to Monitoring Information
If you take a closer look at some of the tables you will see
that quite a bit of information is stored redundantly. This
might not be the “good” thing to do on paper, but it is the
only possibility in order to provide a real-time view on certain
monitoring information (performance/scalability-wise).

This information especially includes (mostly hierarchically)
summed-up information, e.g., the sum of actual effort
tracked for an assignment (from its work records), the sum
of actual effort tracked for an activity (from its assignments),
or the sum of actual effort tracked for a super-activity (from
its sub-activities).

Summing all this information up at run-time would simply not
scale as soon as there are more than just a few projects
stored in the repository.

Limitations and Dangers of
Direct Access
Even though onepoint PROJECTS’s database
schema was designed to be open, it does not
mean that it is always a good idea to access
the database directly.

IMPORTANT: READ-ONLY External Access
onepoint PROJECTS currently uses a so-called “hi/lo
generator” for creating new, unique object IDs for business
objects (such as, e.g., projects or activities) to be stored in
the database. In addition, Onepoint caches information in
memory – including potential session-level database locks
that are (mainly for performance and scalability reasons) not
always persisted in the database.

These two things said, it is not a good idea to write
information directly into an onepoint PROJECTS instance –
unless you know 100% what you are doing. In fact, we
strongly discourage anyone from writing information directly
into the database and if you do so your installation will no
longer be covered by any support contract issued by the
onepoint PROJECTS GmbH.

If you need to write information into the database the good
way to do this is to use the Onepoint Web Services or REST
API available in onepoint PROJECTS 10 or later. This is
also the way the Onepoint professional services team solves
issues where it is required to get information from external
data sources into the Onepoint project repository, e.g., if an
external time tracking system is to be integrated.

Bypassing the Access Control System (!)
onepoint PROJECTS protects stored data via a fine-granular
access control system based on users, user groups and
role-based access permissions. By accessing an Onepoint
database instance directly you need to be aware of the fact
that you are bypassing this access control system.

onepoint PROJECTS: The Most Important Tables
• op_projectnode
• op_resource
• op_projectplan
• op_activity
• op_assignment
• op_workrecord

3

Whitepaper

Unresolved Language Resource References
Another less important, but still “good to know” fact is that
you can encounter object names in the database that are in
fact unresolved language resources. These language
resources have the format “${ResourceName}”. A good
example for this is the porfolio with the name
“${RootProjectPortfolioName}” that refers to the “Base
Project Portfolio” in the application.

The Core Database Schema
onepoint PROJECTS creates quite a few
tables in its database schema. However, only
a limited number of tables deal with the core
data being project and activity name, resource
assignments, dates, effort, duration and costs.

Unique Object Identifiers and Other Common
Columns
Every object in an onepoint PROJECTS repository has a
unique object ID (“op_id”). In addition, it stores the objects
creation date (“op_created”) and an optional modification
date (“op_modified”). These three columns are present in all
tables that we will describe in the following sections.

Organizational Data: Projects, Templates and
Portfolios
Portfolios, projects and templates are stored in a single table
called “op_projectnode”. Note that the project plan is stored
separately and only references the project node it belongs
to.

The most important field of the op_projectnode table is the
smallint field “op_type”. It denotes whether the project node
stores a portfolio, a project or a template:

• 1: Portfolio
• 2: (Reserved for future use)
• 3: Project
• 4: Template

Other important fields of the project node are:

• op_name (varchar, mandatory, unique): The unique name
of the project, template or portfolio

• op_description (varchar): An optional description
• op_start (date): Intended start date of the project
• op_finish (date): Intended finish date of the project
• op_budget (double): Intended budget for the project
• op_priority (integer): Priority of the project

• op_probability (integer): Probability of the project being
started

• op_archived (boolean): If true this project is only displayed
in the project administration and hidden in all other views

• op_supernode (bigint): Object ID of the super project node
(this field creates the portfolio hierarchy)

Organizational Data: Resources and Pools
Individual resources and resource pools are stored in the
op_resource table. The hierarchy is constructed the same
way as for project nodes (via a op_resourcepool object ID
relationship).

The most important field of the op_resource table is the
smallint field “op_type”. It denotes whether the resource
node stores a resource, a resource pool or a collection
resource:

• 0: Resource
• 1: Resource Pool
• 2: Collection Resource

Other important fields of the resource node are:

• op_name (varchar, mandatory, unique): The unique name
of the resource pool

• op_description (varchar): An optional description
• op_hourlyrate (double): The (default) internal hourly rate

for the resource pool
• op_externalrate (double): The (default) external hourly

rate for the resource pool
• op_resourcepool (bigint): Object ID of the super resource

pool
• op_user (bigint): Object ID of the linked user
• op_available (double): The availability of the resource

Note that internal hourly rates are used to calculate
personnel costs and external hourly rates to calculate
proceeds (currently there are only personnel proceeds which
will most likely change in the near future). Pool-inheritance is
already reflected in the stored data.

The Project Plan: Activities and Assignments
All project plans are stored in the op_projectplan table.
Every project node of type project or template can have an
associated project plan.

The most relevant fields of the op_projectplan table are as
follows:

4

Whitepaper

• op_start (date): Minimum start date of all activities in the
project plan

• op_finish (date): Maximum finish date of all activities in
the project plan

• op_projectnode (bigint): Object ID of the project node the
plan belongs to

Activities
The individual activities of a project plan are stored as
activities in the op_activity table. Each activity belongs
exactly to one project plan (op_projectplan).

The most important field of the op_activity table is the
smallint field “op_type”. It denotes which kind of activity is
stored in the table:

• 0: Activity
• 1: Collection Activity
• 2: Milestone
• 3: Task
• 4: Collection Task
• 5: Scheduled Task
• 6: Ad Hoc Task
• 7: Issue

Other important fields of the op_activity table:

• op_name (varchar): The name of the activity
• op_description (varchar): An optional description
• op_sequence (integer): The sequence number of the

activity within the project plan
• op_outlinelevel (integer): The outline level of the activity (0

means it is a top-level activity)
• op_start (date): The start date of the activity
• op_finish (date): The finish date of the activity
• op_duration (double): The planned activity duration in

working hours
• op_complete (double): The completeness of the activity

(in percent, i.e., 100.0 means 100%)
• op_responsibleresource (bigint): Object ID of the

responsible resource
• op_superactivity (bigint): Object ID of the super activity of

this activity (null if this activity is a top-level activity)
• op_deleted (Boolean): If this is true this is an activity that

has been marked as deleted
• op_baseeffort (double): Planned effort in working hours
• op_base…costs (double): Planned costs (where

op_basepersonnelcosts is calculated based on internal
hourly rates and resource assignments)

• op_baseproceeds (double): Planned personnel proceeds
(calculated based on external hourly rates and resource
assignments)

• op_actualeffort (double): Actual, tracked effort in working
hours

• op_actual…costs (double): Actual, tracked costs (where
op_actualpersonnelcosts is calculated based on internal
hourly rates and resource assignments)

• op_actualproceeds (double): Actual, tracked personnel
proceeds (calculated based on external hourly rates and
resource assignments)

In addition, you will find op_remaining… fields analogous to
the various op_base… and op_actual… fields. These fields
contain effort-to-complete/cost-to-complete estimations that
have been either calculated from the op_complete field or
reflect summed-up estimations from assignments/work
records (see below) – based on the currently set calculation
mode of the project (effort-based vs. independent planning).

Note that the activity hierarchy can be reconstructed in two
ways:

• Either by using the op_superactivity field (typically
preferable)

• Or by using the combination of op_sequence and
op_outlinelevel

Note also that you can typically ignore activities marked as
deleted (op_deleted). There is a technical reason behind
sometimes keeping an activity in a plan even though it was
deleted.

Resource Assignments
Every “leaf-activity” in the project repository is allowed to
have one or more resource assignments, i.e., every activity
that has no sub-activities. These assignments are stored in
the op_assignment table that in turn defines the following
important fields:

• op_assigned (double): Planned assignment of the
resource in percent of working time per workday (100.0
being 100%)

• op_activity (bigint): The object ID of the activity the
resource assignment belongs to

• op_resource (bigint): The object ID of the resource being
assigned to the activity

• op_baseeffort (double): Planned effort in working hours
for this resource (already taking the op_assigned value in
consideration)

5

Whitepaper

• op_basecosts (double): Planned personnel costs for this
resource (based on planned effort and internal hourly
rates)

• op_baseproceeds (double): Planned personnel proceeds
for this resource (based on planned effort and external
hourly rates)

• op_actualeffort (double): Actual, tracked effort in working
hours for this resource (already taking the op_assigned
value in consideration)

• op_actualcosts (double): Actual tracked personnel costs
for this resource (based on planned effort and internal
hourly rates)

• op_actualproceeds (double): Actual, tracked personnel
proceeds for this resource (based on planned effort and
external hourly rates)

Please note that the op_remaining… fields contain effort-to-
complete/cost-to-complete information analogous to
activities, but on the assignment-level; cost fields on this
level always refer to personnel costs.

Deprecated Tables

Although the Onepoint database schema remained pretty
stable over the last couple of years, we still had a number of
smaller (automatic) schema migrations – especially, in order

to respond to growing demands of our customers in the
project resources and cost controlling areas. Due to this fact,
there are a small number of tables you might find in your
database schema that are deprecated, i.e., no longer in use
by onepoint PROJECTS. When example is the
opresourcepool table that once contained the resource pools
that are now managed also in the opresource table together
with other types of resources such as normal and collection
resources.

The most “famous” deprecated tables are:

• op_object
• op_resourcepool
• op_workslip

If you come across one of these tables in a onepoint
PROJECTS 10 database schame (or a later version) you
can safely ignore these.

 Additional Information
This is a living document. Find out more about onepoint
PROJECTS at http://www.onepoint-projects.com.

